SIMPLE GRAPHOIDAL COVERING NUMBER OF PRODUCT OF GRAPHS
نویسندگان
چکیده
منابع مشابه
Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملOn 2-graphoidal Covering Number of a Graph
A 2-graphoidal cover of a graph G is a collection ψ of paths (not necessarily open) in G such that every path in ψ has at least two vertices, every vertex of G is an internal vertex of at most two paths in ψ and every edge of G is in exactly one path in ψ. The minimum cardinality of a 2-graphoidal cover of G is called the 2-graphoidal covering number of G and is denoted by η2(G) or η2. Here, we...
متن کاملThe Monophonic Graphoidal Covering Number of a Graph
Abstract: A chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless path. A monophonic graphoidal cover of a graph G is a collection ψm of monophonic paths in G such that every vertex of G is an internal vertex of at most one monophonic path in ψm and every edge of G is in exactly one monophonic path in ψm. The minimum card...
متن کاملon label graphoidal covering number-i
let $g=(v, e)$ be a graph with $p$ vertices and $q$ edges. an emph{acyclic graphoidal cover} of $g$ is a collection $psi$ of paths in $g$ which are internally-disjoint and cover each edge of the graph exactly once. let $f: vrightarrow {1, 2, ldots, p}$ be a bijective labeling of the vertices of $g$. let $uparrow!g_f$ be the directed graph obtained by orienting the...
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2016
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v111i2.9